$$6+1+1+\frac{3}{4}$$

 $8^{314}=\frac{35}{4}$
 $\frac{35}{4}$. $60=\frac{350}{4}=\sqrt{\frac{175}{2}}$ Km

40

The figure above gives your velocity during a trip starting from home. Positive velocities take you away from home and

Distance from home is

When are you farthest from home?

hours.

are above gives your velocity during a trip starting from home. Poward home.

Your answers to the nearest integers.

are you at the end of the
$$\frac{5}{2}$$
 hours?

11(4)

3-(175)

25-145 380 190

Ke call: $\int_{a}^{a} \frac{F(x) dx}{\text{where}} = F(x) - F(a)$ where F(x) = f(x)FTC F(6) - F(a) difference in F/x1

a and b S(b)-S(a) Sbv(t) dt V(4)=S(+) 9(+1 = V'(+) total siglicement rate of change

Chapter 5, Section 5.5, Question 8

The marginal cost function of producing q mountain bikes is

$$P(31) = P(31) - C(31) = 210 - \frac{600}{0.3q + 5}.$$
(a) If the fixed cost in producing the bicycles is \$2500, find the total cost to produce 30 bicycles.

Enter an answer to two decimal places.
$$C(30) = C(0) + C(9)$$

\$
$$4559.24$$
 = $2500 + \int_{0.39+5}^{30} \frac{600}{0.39+5} d9$
(b) If the bikes are sold for \$210 each, what is the profit (or loss) on the first $\frac{30}{0.39+5}$ bicycles?

Enter an answer to two decimal places.

Enter an answer to two decimal places.

(c) Find the marginal profit on the
$$31$$
 st bicycle.

$$P(30) = R(30) - C(30)$$

$$=30.210-4559.24$$

$$R(q) = 2p.9 \Rightarrow R(q) = 210$$

P(9) = R(9) - C(9)9- itens: profit revenue cost => P(9) = R(9) - C(9) (6) Prifit is MANIMED marsinal marginal marsiml profit R(9) = C(9)perme Calt Marghal = marghal revenue cost $\int_{a}^{b} C(q) dq = C(b) - C(a) = cost = t$ producing b items once you are producing cost baitens $C(b) = C(b) + \int C(q) dq =$ produce 6 items c16)-c(0)